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The elastic interactions generated by the presence of a biperiodic network, more precisely hexagonal, of misfit dislocations in the interfacing 
of a thin bicristal have been simulated numerically while considering an anisotropic elasticity for each crystal. The representation of the 
normal equi-stress  near the dislocation segments and near of the triple node of hexagonal cell permits to detect the stress concentration zone 
du to elastic field for InAs/(111)GaAs system, because, in the category of semiconductors, this is an ideal system which exhibit the presence 
of edge dislocations type parallels to the free surfaces by S.T.M.[1].
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Campo interfacial de tensiones generado por una red biperiódica hexagonal de dislocaciones en un bicristal delgado de InAs/(111)GaAS
Las interacciones elásticas generadas por la presencia de una red biperiódica, de dislocaciones en la interfase de un bicristal han sido 
simuladas numéricamente, considerando elasticidad anisotropa para cada cristal. La representación de las tensiones próximas a las 
dislocaciones y del nodo triple de la celda hexagonal, permite detectar la zona de concentración de tensiones debido al campo elástico para 
el sistema InAS/(111) GaAS, ya que, en los semiconductores, éste es un sistema ideal que muestra la presencia de dislocaciones paralelas a 
las superficies libres por S.T.M.[1].

Palabras clave: Dislocaciones, películas finas, interfases, elasticidad anisótropa.

1.	 Introduction

The combination of two different semiconductors is always 
challenging in term of understanding both the chemical composition 
and the effect of the misfit strain during growth. For semiconductors, 
some authors had study STM images which exhibit the presence of 
an hexagonal mesh of edge dislocations parallel to the free surfaces, 
the results are recent, cf InAs/(001)GaAs (Belk & col. 1997), InAs/
(111)GaAs (Yamaguchi & col. 1997). Because of the image contrasts of 
a dislocation can be computed from its displacement field Uk, the aim 
of this work is to propose a computer simulation of the normal equi-
stress  near the dislocation segments and near of the triple node of the 
hexagon cell, for an ultrathin bicristal formed by InAs on (111) GaAs, 
using a method of determination of biperiodic elastic fields based 
on a double Fourier series analysis ( Bonnet 1992), adapted  to the 
complex geometry of the mesh and to specific boundary conditions of 
the problem, with the assumption that the two crystals are elastically 
anisotropic but different as species.

2.	 Geometry of hexagonal network of misfit 
dislocations

	 In figure (1), we consider the heterointeface papered with 
a regular hexagonal network of misfit dislocations between two 
ultrathin layers having finite thickness, different nature  and elastically 
anisotropic, which are  noted crystal(+) and crystal(-), the elastic 
constants of this crystals are denoted by Cijkl

+ and Cijkl
- respectively. 

 

3. Formal solution of displacement and 
stress field

3.1. Displacement field 

The displacement field being biperiodic for either crystal (+) or 
(-), the generalised solution of elasticity equations of Navier, is given 

Figure 1. Hexagonal network of misfit dislocations. At the interface of 
two thin foils.

 Figure 2. A regular hexagonal network of misfit dislocations oriented 
Clockwise UVWRSZ around the center O of a hexagon. OA and OC 
are the period vectors. The Cartesian frame work used is OX1X2X3 .
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in [8b] by :
  (1)

The displacements (1) must satisfy the differential equations of the 
classical elasticity theory, in one part: 

                                            (2)                                         
                                 

And static equilibrium of stresses condition, in the other part :

 (3) 

After combination of (1) with (2) and (3), the general expression of 
displacements uk

(G)Error! Bookmark not defined.must have the form :

 (4)

Replacing (4) in (1) leads to :

(5)

- ����Σ : represents a double  sum over the possible values of the couple 
(m,n), taken inside a domain D defined in [7], not including the 
couple (0,0).

- ����Pα
(G) are complex constant unknowns of global system for (α 

=1,2,3) assigned by a sign (+) or (-) as may be depending on 
crystal (+) or (-). The total number of six complex unknowns are 
found from boundary conditions at the interface, so they depend 
on the Burgers vectors and on the geometry of the network.

- ���λαk
(G) are complex coefficients depending only on the Cij of the 

crystal considered, they are calculated for each α from the 
solutions of the linear homogeneous system (6) obtained after 
combining and developing expressions (1) and (3).

(6)

  
with :

The coefficients λαk
(G) must also be calculated so as to verify the 

relation λα1
2 + λα2

2 λα3
2 = 1. 

- Pα
(G) are complex roots obtained by solving the sextic polynomial 

which is the expression of the determinant of system (6), this 
determinant must be equalled to zero for obtaining non trivial 
solutions.

In writing that :

The expression (5) becomes :

 Knowing that Uk  is necessary a real quantity, The expression (5) 

becomes :

(7)

Re means “real part of “.

3. 2. Stress field

Using Hook’s law in anisotropic elasticity theory  expressed by 
(2),

(8)     

From derivation of equation (7) via (8), we obtain	  : 

(9)

With : 

(10)  

4. Boundary conditions and global system

4.1. Displacements conditions

Knowing the discontinuity of displacement field U crossing the 
heterointerface, the relative displacement  ∆U = |uk

+ – uk
–|x2=0  is 

zero at the centre of the cell and varies linearly along interface, from 
centre of each hexagon see fig (2), thus ΔU is varying linearly with 
x1 and x3 and takes a maximal value along dislocation segments UV 
and ZU, this is means that ΔU is equal to half value of Burgers vector 
adjoining these segments . We can express ΔU analytically inside the 
unit cell UVWRSZ, using the geometric transformations developed in 
appendix B cf. Ref.[7] as :

(11)

b(ZU) and b(UV) being Burgers vectors respectively for segments of 
dislocation ZU and UV. The displacement inside one hexagon cell 
being biperiodic, when we develop ΔU into a double Fourier series 
on all the vectors G relative to the frame Ox’1x’2x’3, as indicate in [7], 
we obtain : 

(12)

The vector T(G) with components ( T1,T2,T3) describe the geometry 
of the network, it has been obtained from cumbersome integrations, 
it depends on the non-zero reciprocal vector G(m,n) and is defined in 
appendix B ref.[9] as for an irregular hexagon. 

(13)

in which α1 and α2 are the internal co-ordinates of the U point in 
unit cell UVWRSZ (fig2), as: OU = α1 c + α2 a. 
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The cases of zero denominators in (12) for a regular hexagon (α1 = 

α2 = π /6) are presented in table in [7] .

4.2 Stress conditions

The interfacing of a thin bicristal, being in equilibrium, in 
the reference mark Cartesian Ox1x2x3 figs (2), the normal stresses 
(according to x2 ) σ2K are, on the one hand, continuous through the 
heterointerface, and on the other hand, hopeless to the free surface of 
each crystal. 

-	 The continuity at the interface  gives:  

(14) 

-	 The nothing at the free surfaces gives: 

(15)

(16)

4.3 Gotten global system

After transformation of expressions of displacements and 
constraints (7) and (8) in trigonometric terms and application of 
boundary conditions (12), (14), (15) and (16), a system of (4x3) 
equations (17) is obtain with 12 complex unknowns to determine. 
This system must be solved numerically because of its complexity, 
a Fortran program had established to this effect to determine 
complex coefficients P+, P-, Q+ and Q-, holding amount of the necessity 
to work in double precision, because, for high order of harmonic 
(m,n), the inversion is very difficult numerically when the exponential 
terms become very bigger or very smaller. Fields of displacement 
being discontinuous to the neighbourhood of dislocation cores, the 
convergence becomes very nit for very big harmonic. 

(17)

5.	 Application

The program is written to compute the values of displacement of 
structural units at the free surface, data used where relative to bicristal 
prepared by Yamaguchi & col. (1997), which are deposition of InAs on 
(111) GaAs substrate. The two crystals have same parallel directions 
and Burgers vectors of misfit dislocations are from 1/2<110> type.

The lattice parameters and elastic anisotropic constants are given 
by Chami (1988) [10], Burgers vector modulus is given by : b = (aInAs 
+ aGaAs) / 2√2  = 5.98 nm, so the components will be as folow : b(UV) = 
(0; 0; -b) and b(ZU) = (-b√3/2; 0; -b/2). Period vectors OA and OC from 
hexagonal cell have same length as : a = aInAs. aInAs /( aInAs - aInAs) √2 |, 
all this is given in table I . For numerical computation, the summation 
parameters m and n were stopped at 20 because it gives a good 
convergence of double Fourier series, and a thickness of  h = 5 aInAs / 
√2  was chosen for representing the displacement field (Bonnet [6]).

6.	R esults and discussions

In figures (3a) and (3b), we can see the normlal equi-stress σ11 and 
σ22 through the interface near the triple node of the hexagonal cell.

The theoretical contrast varies from -3 GPa to +3 GPa when the 
values passes from a dark maximum to a white minimum. Hollow 
of the surface is more accentuated. These features are perfectly find 
again on the figure 4 of Guenther & col. (1995) for which the hexagonal 
network of misfit dislocations is perfectly relaxed. The results permits 
to detect with precision the stress concentration zone du to elastic 
field, and shows a good analogy with analytical results obtained using 
an isotropic coefficients.  

            

Fig 3. a) equistress σ11 near the triple node of hexagon. b) equistress 
σ22 near the triple node of hexagon

Interfacial stress field generate by a biperiodic hexagonal network of misfit dislocations in a thin bicristal InAs/(111)GaAs 
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7. Conclusion

Numerical simulation proposed in this notes shows that, using has 
method of determination of biperiodic and anisotropic elastic fields 
based one has double Fourier series analysis (R.Bonnet 1992), it is 
possible to quantify stress fields aspects characteristics of a deformed 
free surface by a regular hexagonal network of misfit dislocations. 
The gotten features are indeed in good agreement with the count 
of S.T.M images proposed by R.Bonnet (1997) for the same bicrictal 
and isotropic elastic constants, as well as with observations (fig 4) of 
Guenther & col. (1995) for Cu / (001)Ru and more rudely, with those of 
Yamaguchi & col. (1997), see (fig 1c) for InAs / (111)GaAs. 

Considering Zeners coefficients value more elevated for the two 
crystals, to know 1.82 for GaAs and 2.08 for InAs, we can say that the 
relative relief to the hexagonal shape of the network of DMS have been 
preserved, and put to part nuances of gray, we are very able to judge 
the conformity of images gotten relatively. 
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